"MOLTEN-SALT TARGET AND BLANKET CONCEPT"

[Application of the Molten-Salt Technology on the Spallation Neutron Facilities]

Kazuo FURUKAWA*, Kineo TSUKADA**, and Yasuaki NAKAHARA*

- * Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken 319-11 JAPAN
- * Atomic Energy Research Institute, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101 JAPAN

SUMMARY

The applications of molten-salt target and blanket to the Molten-Salt Intense Neutron Source (MSINS) and the Accelerator Molten-Salt Breeder (AMSB) are discussed, where the molten fluorides including ThF_4 or UF_4 in high concentration are utilized as shown in Table 1.

This concept naturally has several significant benefits relating to the target fabrication, design, radiation damage, heat removal, safety, economy, etc. So far, however, it was thought to have a poor spallation neutron yield as a severe fault. According to the results of neutronic calculation carried on the molten-salt system such as LiF-BeF₂-ThF₄, LiF-NaF-ThF₄, LiF-BeF₂-UF₄ etc., their neutron yields have been found comparable or superior to the values for heavy metal targets such as Bi and Pb, assuring the high performance of MSINS and AMSB.⁽¹⁾

The schematic figures of MSINS and AMSB are shown in Figs.1 and 4, together with the several tables and figures of their neutronic calculation models, neutron yields, predicted performances, etc.⁽¹⁾ Neutronic calculations have been performed with the use of NMTC/JAERI modified to include fission processes, TWOTRAN-II and other auxiliary codes. The spatial and energy distributions of neutrons are also calculated, though an effect of Be(n,2n) reaction is not included. The chemical aspect of spallation products in these facilities are examined and estimated that they are practically manageable in processing.

One of the most useful applications of MSINS may be the material irradiation facility for engineering test because of the larger irradiation volume than that in the other metal targets.

Reference

 (1) K.Furukawa, K.Tsukada, and Y.Nakahara, "Single-fluid-type Accelerator Molten-Salt Breeder Concept", J. Nucl. Sci. Tech. <u>18</u> (1981). in press

- 349 -

Table 3. Neutron Yield per lGeV Proton at the Window the Intense Neutron Source (MSINS) of

⁷ LIF-8eF ₂ -UF ₄ (61-21-18)	molten salt
14.5 ± 2.2	cascade + evaporation + fision (≥15 MeV)
16.9 ± 2.6	whole energy range (1000 ~ 0 MeV)

Table ÷. ¢1 ĉ, v e C of the Molten-

heat fissil spall	salt salt	salt	potos salt
generation \sim e material generation \sim ation reaction products \sim	volume weight flow	temperature	salt Intense Neutro n bedm example melting point (Tm) density at Tm + 100°C viscosity coefficient
50 MW th 5 kg/year 0.7 kg/year	3 m³ 10.7 ton (Th 6.5 ton) 150 t∕min	Inlet 520°C outlet 600°C	n Source (MSINS) 1 Ga⊽ 10 mA ⁷ L1F-RbF-UF4 (57-10-33 mol%) 470 °C . 3.57 g/cm ³ 17~19 cpoise (600°C)

Table ы Ч Example of Predicted Performances of Single-fluid-

type Accelerator Mol	ten-Salt Breeder (AMSB)	
proton beam	t Ge∇ , 300 mA	
salt example	⁷ LIF-NaF-ThF ₄ 54.5-13.5-32m/o	
$\int melting point (Tm)$	525 °C	
density at Tm+100°C	3.31 g/cm ³	
viscosity coefficient	19~22 c poise (600 °C)	
	11~13 - (700°C)	
salt temperature	inlet 560°C outlet 650°C	-
salt volume 1	000 m ³	352
salt weight 3	331 ton (Th 208 ton)	- 3
salt flow (6 m 3/sec	
thermal output	2500 MW th	
elec, power generation	~1100 MW 8	
elec, power consumption	750~900 MWTe	
fissile.material production* 8	800'∼1000 kg/year	
	640∼ 800 kg/year (80% load)	
spallation products	~40 kg/year	
fission products	~40 kg/year	
* Except for the continuous	removal, this will be increased	

to about twice.

	mol %	melting point	density at Tim +100°C	viscosity coeff (cpoise)		
		1m (°C)	(g/cm²)	600°C	100-0	
LIF-BeF2-ThF4	72-16-12	500	3.35	12	7	
	71- 9-20	540	2.97	16~18	7~9	
	67-18-15	.500	2.70	13~15	6~7	
	64-18-18	540	2.7	12~14	6~7	
LIF-ThF4	71-29	568	3,36	20~22	12~14	
LiF-NaF-ThF4	54.5-13.5-32	525	- 3.31	19~22	11~13	
NaF-KF-ThF4	11-67-22	535	2.54	14~16	8~10	
	61-21-18	550	2.87	13~15	6~7	
LIF-TIFA	71-29	525	3.41	20~22	12~14	
LIF-NoF-UF4	43.5-24.3-32.2	445	3.09	20~22	12~14	
LIF-RbF-UF4	60-10-30	460	3.52	16~18	10~12	
	57-10-33	470	3.57	17~19	11~13	
NaF-RbF-UF4	45-27-28	500	2.99	15~17	9~11	
NoF-KF-UF4	47-20-33	550	2.89	18~20	11~13	
1	1	I	1	1	<u> </u>	

ถึ	=	5	Q	œ	7	ത	UN	4	4	2	-	Case
NaF-RbF-UF4 (45-27 -28)	" (57-10-33)	LIF-R6F-UF4	7LIFUF4 (71-29)	⁷ LIF-BeF ₂ -UF ₄ (61-21-18)	NaF-KF-Th F4 (11-67-22)	⁷ LIF-NoF-ThF4 (54.5-13.5-32)	⁷ LIF - Th F4 (71-29)	" (64-18-18)	" (67-18-15)	" (71- 9-20)	LIF-8872-Th F*	molten salt
28.0 ± 1.8		27.7 ± 1.7	28.1 ± 2.8				27.3 ± 2.2			26.1 ± 2.1	22.3 ± 2.3	cascade + evaporation (≥15 MeV)
	36.0 ± 4.0		33.2 ± 2.6	31.2 ± 2.4	25.9 ± 3.0	32.4 ± 2.1	33.04±1.9		28.6± 3.3	29.6 ± 2.1	25.1 ± 3.0	cascade + evaporation + fission(15≥MeV)
				38.4 ± 3.0		34.0±2.2			29.5 ± 3.4			whole energy range (1000 ~0 MeV)*

(**) The effect of Be(n,2n)
included yet.

reaction 1,s not 8 ughly

- 353 -

- 354 -

420